
 

 

 

White Paper 

 

  

Quickly discover novel IP in huge Chemical Spaces that are set up with your proprietary 

chemical know-how and in-house building blocks. Find in zillions what will actually land 

on your bench. Save substantial time and money with Chemical Space navigation tech-

nology that is used globally across pharma, crop science, and academia.  

Deep Dive into Accessible Chemical Spaces 

 capturing chemistry and building blocks 

 billions of purchasable compounds covered 

 > 1015 compounds searched in minutes 

 proven to work across pharma 

Capitalize on your resources and the vast 

know-how of chemistries developed in your 

company. There must be hundreds — if not 

thousands — of protocols for parallel synthe-

ses. 

 
This knowledge — probably among your company’s most valuable assets — easily covers billions of 

products, of which only a small fraction has ever been made. The recipes are known, all those com-

pounds are most likely accessible with limited effort, and your chemists will know how to make 

them. Combining all the information results in a method that mines new leads from your very own 

Chemical Spaces within minutes. In this white paper we show how easily this can be achieved and 

provide ample evidence that the procedure does work in practice. It has already led to new active 

scaffolds in numerous therapeutic projects in Big Pharma. 
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Unlimited Accessibles 

Discover novel IP in your own Chemical Space, based on 

your proprietary building blocks and unique knowledge, or 

in spaces from commercial compound vendors offering syn-

thesis-on-demand. 

 Sizes beyond 10
25

  

Sometimes one cannot see the wood for the 

trees, although all the components for the so-

lution are at hand. The number of compounds 

one can principally synthesize is determined by 

the chemists' know-how and available building 

blocks. Vast Chemical Spaces capture this 

knowledge, yet only with efficient screening so-

lutions it is accessible in an almost interactive 

fashion. 

BioSolveIT’s novel Chemical Space navigation plat-

form infiniSee finds molecules of interest in screen-

ing libraries or Chemical Spaces of almost infinite 

size. Given a template or query molecule, infiniSee 

searches billions and delivers in seconds. The under-

lying concept of molecular similarity (FTrees) and on-

the-fly solution generation (FTrees-FS) guarantee ac-

cessible, unexpectedly chemically–related molecular 

htis. 

 Commercial Chemical Spaces based on reliable syn-

thetic protocols complement in-house libraries with 

unique building blocks, knowledge, and methods. 

 Synthesis requires manpower, building blocks, and in 

many cases several attempts. Save time and re-

sources by cost-effective purchase of desired com-

pounds from our collaborating vendors. 

 More than 16 billion of tangible molecules to mine 

and order straight away. Enamine guarantees deliv-

ery rates of >80% within 3 weeks time.[1]  WuXi’s GalaXi 

compounds extend possibilities by another 2 billion. 
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The Big Workflow Picture  

 5 steps to capitalize on your company’s most valuable asset 

1. All your in-house chemistry know-how is captured and stored in a Chemical Space 

2. Employ a similarity search method proven to be outstanding at scaffold hopping  

3. Search the Chemical Space using your unique virtual product assembly  

4. Hit lists are reported back to the user — providing synthesis protocols and reagents. 

5. Visual inspection quickly leads to novel leads from the innumerably large space 

Capturing Chemistries 

It all starts with capturing chemistries in a computer-readable fashion: Sketch or write down a description 

of reaction protocols that range from simple two component reactions to multi-step reactions involving 

four or more reagents and by-products. We have done this for large parts of the literature for you already. 

In the end the basic principle is the same: A scaffold — potentially with some variations — is formed, and 

a certain amount of attached side-chains give rise to a combinatorial explosion in the number of different 

products.  

Assume you had three sets of reagents — for 

simplicity say 1000 each. This would result in a 

library containing 1000 x 1000 x 1000 = 1 billion 

products.  

Our app CoLibri is capable of taking reagent lists 

in various formats and reactions as either RXN or 

SMIRKS. Based on this input it creates your vir-

tual Chemical Space. 

 library protocols stored in computer-readable 

format 

 exponential rise in numbers of products 

 multiple input formats supported 
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  Scaffold Hopping: FTrees  

 Molecular similarity by alignment 

With your in-house Chemical Space at hand, the Feature Tree software (FTrees) performs similarity 

searches in this space.[2-4]   

A Feature Tree represents the molecule as a so-called reduced graph with physico-chemical proper-

ties. This makes it detect distant similarities and thus scaffold hop. 

 different than traditional simi-

larity, yet chemistry-aware 

 proven to hop scaffolds 

It represents functional groups as well as rings as single nodes. 

The physico-chemical properties of the substructure repre-

sented by a node are stored in a chemistry property profile for 

that node. 

The overall topology is preserved in the Feature Tree: Nodes representing substructures that 

are connected in the molecule are also connected in the Feature Tree. Now, if two molecules 

are both represented by their respective Feature Tree, FTrees is able to calculate from among 

all the topology preserving mappings of the two Feature Trees the one that gives the highest 

possible similarity value. How is the similarity value calculated? By an alignment of trees: If two 

nodes are mapped then the difference of their respective property profiles gives a local similar-

ity, and the overall similarity is just the normalized sum of these local similarities. 
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 See the similarity, stay in the driver’s seat 

An FTrees mapping of dihydrofolate (top) 

onto methotrexate (bottom). Sub-struc-

tures of the same color are mapped onto 

each other and their given FTrees similarity 

is presented on the right. 

FTrees is able to recognize the similarity of 

the electron pair donor (highlighted in 

blue) of the heterocycle as well as to differ-

entiate between the non-methylated and 

methylated nitrogen atom. Good to know: 

This is irrespective of the protonation 

states.  

 More than your typical screening platform 

 lightning-fast screening: screen millions of molecules within seconds 

 Other than classical Tanimoto descriptors Feature Trees capture molecular topology, al-

lowing to discover distant neighbors that surprise and inspire you  

 technology among the top performers when it comes to enrichment rates 

 best in class in terms of scaffold hopping 

Search for neighbors 

It gets even better: FTrees not only has all these fantastic 

attributes that make it the perfect choice for similarity 

searching across traditional libraries, but it can also be 

used to search across Chemical Spaces. In the same way as 

for a whole molecule, you can represent the building 

blocks in a Chemical Space as Feature Tree fragments. 

If you provide a query molecule as input, an extension 

module called FTrees-FS is capable of searching the Chem-

ical Space; the result will be a list of the most similar prod-

uct molecules generated. This is done by recursively de-

tecting most similar substructures and assembling multi-

ple building blocks to virtually grow a set of molecules from 

the Chemical Space. 

Two building blocks are repre-

sented by two Feature Trees. Form-

ing a “bond” between the link atoms 

leads to a bigger Feature Tree, 

which translates back to a new mol-

ecule. The history behind its for-

mation is preserved.  
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  The Advent of Chemical Spaces  

Over the past decade, global pharmaceutical companies have discovered the possibilities be-

hind Chemical Spaces.[5] The biggest and renowned proprietary compound libraries were cre-

ated with CoLibri reaching colossal sizes of 1026 (with rising tendency). Novel IP was highly  suc-

cessfully mined, actives found in previously uncharted Chemical Space (see refs. at the end). 
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  3D: Chemical Space Docking  

 Step by step solution generation 

The colossal size of Chemical spaces poses a chal-

lenge for traditional docking methods due to their 

sheer size and the associated computations. Dock-

ing calculations of 1015 sized spaces would take 

thousands of years, even on modern hardware for 

vast Chemical Space, disqualifying them for prac-

tical applications.  

Chemical Space Docking takes a different ap-

proach how to handle these massive numbers. In 

the first step you dock your building blocks 

which represent only a miniscule percentage 

of your actual Chemical Space. Then we assess 

their binding mode with desolvation-aware scor-

ing. Automated filtering removes binding modes 

of building blocks with unwanted linker positions, 

low scores, and few interactions. Optionally in-

clude known binders to fine-tune the docking pro-

cess with pharmacophore constraints or template 

docking. Bump checks and more are performed. 

In the next step you let your selection “evolve” 

based on which synthons/linking partners are 

compatible. The whole procedure can be done by 

a single person in short time with a standard work 

station.  

Subsequently, you can cherry pick the most 

promising and interesting candidates for further 

growing. Do this manually, by checking for specific 

pharmacophores/(un)wanted substructures, or 

remove those with unspecific binding.  Your exper-

tise during the visual inspection process maxim-

izes the likelihood of success. 

docking of 

building blocks 

(small % of 10x) 

compatibility 

visual and manual 

filtering 

• linker’s position 

• interactions 

• HYDE score 

• pharmacophore 

• physico-chemi-

cal properties 

• known binders 

• … 

 combination of the vastness of Chemical Spaces with 

SBDD 

 explores more compounds than conventional docking 

 manual and automated filtering for desirable und un-

wanted properties 

second round 

of filtering 

synthetically accessible hits 



  

8 

 

  Real-Life Application  

 Capturing CDK2 inhibitors as published in Science 

 Example from an article published by Gray et 

al. represented virtually using BioSolveIT 

technology [6] 

 2,6,9-tri-substituted purines synthesized from 

a much purine scaffold 

 Involved methods: solid-phase amination, al-

kylation reactions, and a subsequent acidic 

cleavage 

 For the expert: The genesis of a 109 molecules Chemical Space 

Representing this protocol in the computer is a simple procedure. What is essential are educts, 

products, and a formalized description of the newly formed bonds. The purine scaffold will 

be termed as a “core”, whereas the reagents for substitution will supply the “R-groups” (i.e., the 

residues in the resulting products — not to be confused with the R-notation in chemical formu-

las). Where exactly a bond is created is defined on the basis of dummy or “linker atoms”. The 

core and educts therefore need to be equipped with these. 

 
[Cl][*]    >>  [Cl].[*][1*]  
[H:1][N:2] >>  [H:1].[N:2][2*]  
[F][*]     >>  [F].[*][3*]  

Three lines of code to prepare 

the purine core. 

In Step 1, CoLibri is used to replace the amine-H at posi-

tion 9 and halogens at positions 2 and 6 at the core for 

linker atoms. The linker atoms are denoted R1-R3. The cor-

responding SMIRKS-like CoLibri rules for the core is a sim-

ple three-liner in which a dot denotes the cleavage of a 

bond and the [n*] notation introduces the linker atoms. 

The purine core, after applying these transformations, is represented on the left. 

With 3 more rules, CoLibri prepares the educts for the substituents: It clips the 

amine and alcohol H-atoms to form the “naked” R-groups. Finally, you need to 

define how clipped building blocks may be recombined (“linker compatibility”). 

Certainly, we can also do all this for you in a Service setup. Please get in touch! 
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 Combinatorial build-up 

The original Science publication reports 19 reagents for R1, 7 for R2, and 10 educts for R3 result-

ing in 19 x 7 x 10 = 1,330 products. Reagents lists were combined for R1 and R3 and added 309 

additional primary amines. Furthermore, R2 was extended by 274 alcohols from the same 

source. All this was done with fine medicinal chemistry expertise. Our resulting search space 

consists of 70 million compounds (499 x 281 x 499 = 69,969,281) for this single reaction pro-

tocol. 

Now, how about more reactions? 

We processed more than 120 combinatorial libraries 

with three or four R-groups. Our virtual Chemical Space 

(KnowledgeSpace™) today consists of more than 1014 

virtual products, and this is nowhere near the limit as 

you will see below. The KnowledgeSpace™ comes free 

of charge with our software. 

Search for neighbors 

Everything is based on the easy-to-read chemistry description standards RXN/SMIRKS which 

allow all kinds of substructure detection and replacement. Using the CoLibri procedure, the raw 

input data will transform into a Chemical Space. 

No matter how big your in-house 

library and no matter how many 

compounds you acquire to add 

to it – it will only be a tiny fraction 

of what your chemists are capa-

ble of synthesizing. 

The entire CoLibri procedure is scriptable and supported 

by 2D visualization of substructure matches. The real 

power of the mechanism obviously comes from its ability 

to process hundreds or even more protocols as above and 

make them accessible as a single enclosed Chemical Space. 

Here it is important to note that CoLibri is able to remove 

the redundancy from a dataset by representing duplicate 

building blocks in the input using only one representative 

instance and maintaining a lightning fast, hash key-based 

lookup table to map any results data back onto the original 

input. This way CoLibri reports not only virtual products to 

the user but is also able to annotate these results with the 

chemistry library protocol and the particular reagents 

that form a product. 



  

10 

 

  Success Stories  

 Already in 2008, Pfizer mined from trillions of compounds within a few minutes 

Amongst the pioneers in proprietary Chemical Space set-up, Pfizer, in 2008, created the PGVL 

combinatorial chemistry protocols.[4] A total of 358 combinatorial libraries were converted 

into a single, concise Feature Tree Chemical Space comprising a total of 3,000,000,000,000 (3 

trillion) virtual products. This Chemical Space was then validated in a variety of ways. In sum-

mary, with a sample set of 1,790 query building blocks (5 randomly chosen for each protocol), 

it was possible to retrieve three or more queries in the top 100 ranks for 99% of the protocols. 

Considering the vast number of products in the space, this is literally akin to finding a needle in 

a gigantic haystack. 

When applied to searching a sample set of 

1,661 compounds from the WDI, 91% re-

trieved a compound with similarity of 0.9 

or higher, demonstrating that the Chemi-

cal Space covers a broad range of drug-

like molecules. 90% of these searches 

had a search time of less than 20 minutes 

on a single CPU — back in the days! Also, 

the results covered a broad range of dif-

ferent chemistries in that 50% of all proto-

cols were employed at least once to form 

the top-ranking product for a search. 

Most interesting is of course the ability to scaffold-hop from one active hit to another attrac-

tive series. The most interesting hits were found in the range of similarities between 0.90 and 

0.95. In other searches at Pfizer, a central pyrrolo-indole scaffold was replaced by an indanyl 

piperazine ring, a central ketone group was substituted by an amide bond linker, or a pheno-

thiazine heterocycle was replaced by a phenyl-indole scaffold — to mention just a few scaffold 

hops. 

Other methods incapable of finding FTrees-FS hits 

In the same work, two marketed drugs for the serotonin 5-HT3 receptor were used as queries 

which produced active hits originating from a variety of chemistries such as ether and amide 

bond formation or a urea reaction. Unfortunately, some of the more exciting hits could not be 

disclosed by the authors. Interestingly, for a sizeable number of cases the hits produced by 

FTrees-FS had quite low Daylight or Pipeline Pilot (FCFP4) fingerprint similarities, which further 

underlines the uniqueness of these results. Not only are these methods easily accessible for 

virtual libraries of this size (1012) due to sheer size, but also these other methods would only 

have retrieved these solutions ranked worse than a few billion others because of the low simi-

larity scores that do not capture distant, non-obvious similarities. 
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 Nanomolar inhibitors with novel scaffolds by Boehringer Ingelheim 

In another study, Uta Lessel of Boehringer Ingelheim presented at the 8th International Confer-

ence on Chemical Structures[7] two successful applications of Feature Tree Chemical Space 

searches based on combinatorial library protocols. Based on a sizeable number of combichem 

protocols, the so-called BI-CLAIM Chemical Space was generated on the basis of roughly 1,600 

scaffolds and about 30,000 unique reagents. Thousands of compounds were actually synthe-

sized for each of these protocols, which however amounts to only a tiny fraction of the 

500,000,000,000 (500 billion) virtual products covered by BI-CLAIM then. The typical workflow 

described in this presentation has two parts. First a literature active is taken to search the Chem-

ical Space and yield in the order of a few thousand hits. Then a shape filter is applied in order 

to provide a first pass validation of the hits, and finally the results are grouped by scaffold and 

visually inspected. Part two of the workflow is to manually select the most promising scaffolds 

and design focused libraries around them, or purchase prototypes of those compounds if com-

mercially available. If activity is found and confirmed in these series, then one or more rounds 

of refinement based on traditional medicinal chemistry are applied. The researchers from 

Boehringer Ingelheim reported on a GPCR and a proteinase project where these procedures 

quickly led to nanomolar inhibitors in novel series. 

 SAR by Space 

In a recent publication, Enamine’s REAL Space™ 

was mined to identify novel bromodomain-contain-

ing protein 4 (BRD4) inhibitors using FTrees-FS.[8] 

Commercially available neighbors to query mole-

cules with drug-like properties were retrieved from 

the fragment-based Chemical Space using the simi-

larity search of FTrees-FS. Starting from very, very 

weakly actives, 5 micromolar hits have been identi-

fied and verified within less than 6 weeks, including 

the pharmacological assessment of IC50 values. This 

unconventional approach was more efficient for hit 

expansion compared to the straightforward frag-

ment-based discovery which required synthesis and 

biological evaluation of thousands of analogs for 

the initially discovered active fragments. The re-

trieved hit molecules exhibited similar pharmaco-

phoric properties. The strategy required 100-fold 

fewer compounds to be synthesized and screened, 

it was faster and therefore way more cost-effi-

cient. 

query  

molecule 

hit 

molecule 
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Chemical Space Docking 

The ability to screen vast Chemical Spaces as a primary source for novel intellectual prop-

erty is becoming more and more important in the modern drug discovery process. However, 

the main obstacle of exploiting the uncharted territory is the computational effort and speed 

behind the process: docking 1012 compounds with one second calculations per molecule, would 

take over 15 million years to screen. Accessing such colossal numbers requires ground-break-

ing methods but bears unlimited potential. 

SpaceLight — Close neighbor collection also for 1015 and 

more 

This topological similarity search algorithm of this novel 

method is based on an efficient recombination approach.[9] Sim-

ilar to FTrees-FS, SpaceLight calculates similarities for query mol-

ecules based on fragments and retrieves ‘close neighbors’. Using 

Extended-Connectivity Fingerprint (ECFP) and Connected Sub-

graph Fingerprint (CSFP), SpaceLight exploits the combinato-

rial character of fragment-based Chemical Spaces resulting in 

unrivaled performance. Billions of compounds can be searched 

within seconds with SpaceLight. 

Even bigger – even more diverse 

In the past decade, Big Pharma and compound makers have recognized the true potential 

behind Chemical Spaces. The underlying concept of maximizing in-house resources, be it 

building blocks, experience, or knowledge, to create huge and diverse compound libraries has 

already brought forth several drug candidates where classical approaches failed. The field of 

Chemical Spaces is continuously expanding as researchers realize the hidden possibilities. 

When will you go and create yours? 

Future Perspectives  
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