The Exciting Story of Covalent Reversible Inhibition of Rhodesain, a Key Player in African Sleeping Sickness

webinar

Tue, 16 Nov 2021, 15:00 CET (Berlin)

Prof. Dr. Tanja Schirmeister, University of Mainz; Prof. Dr. Bernd Engels, University of Würzburg; Dr. Christian Kersten, University of Mainz; Natalie Fuchs, University of Mainz

The Exciting Story of Covalent Reversible Inhibition of Rhodesain, a Key Player in African Sleeping Sickness

Human African Trypanosomiasis (HAT, African Sleeping Sickness) is a fatal, neglected tropical disease caused by the parasites Trypanosoma brucei. Most available drugs for treatment of the disease lack efficiency and have severe side effects. α-halovinylsulfones as covalent reversible inhibitors of the parasitic cysteine protease “rhodesain” have proven to be promising novel drug candidates.
Here, the team around Tanja focused on optimizing α-fluorovinylsulfones and -sulfonates for rhodesain inhibition using molecular modeling approaches. This resulted in highly potent and selective inhibitors with single-digit nanomolar affinity. The researchers further investigated the binding modes experimentally via MS experiments, indicating that the compounds are covalent-reversible, slow-tight binders. The different inhibition mechanisms of fluorinated and non-fluorinated compounds (reversible vs. irreversible) were investigated by QM/MM calculations and MD simulations.
In vivo studies revealed a favorable metabolism and biodistribution compared to non-optimized rhodesain inhibitors. Furthermore, they observed an anti-trypanosomal activity in the nanomolar range for inhibitors with an N-terminal 2,3-dihydrobenzo[b][1,4]dioxine group and a 4-Me-Phe residue in P2.

 

 

Current news

category
Software
'Electra' Update: HPSee Version 2.1
January 21, 2025 09:01 CET
The virtual workflow environment platform HPSee enters the next stage with the 2.1 update. This version introduces powerful new features and enhancements to improve usability, security, and compatibility: Dynamic Library Handling: Rename libraries and update descriptions directly via the API or Admin Dashboard to better track updates, differentiate libraries, and...
Read on
category
Software
SeeSAR 14.1 'Atlas' — Energy Minimization, Chemical Space Docking™, Pharmacophores
January 21, 2025 09:00 CET
More polished, more finesse, more efficiency – that’s version 14.1 of SeeSAR ‘Atlas’. Once again, we’ve rolled up our sleeves to refine and tune the engines and gears of our drug design dashboard SeeSAR. While we were at it, we also put extra effort into new features that will take...
Read on
category
Challenge
BioSolveIT Crowns Two Winners of the Scientific Challenge Winter 2023
December 19, 2024 08:43 CET
We are proud to announce not one, but two winners of the Scientific Challenge Winter 2024: Harry Tran and Katharina Buchthal! Due to the exceptional achievements and execution within both projects, it was simply too difficult for us to choose just one outstanding entry. As a result, we decided to...
Read on