Crystallographic Fragment Screening at BESSY II — From Hits to Improved Binders

webinar

Thu, 24 Nov 2022, 16:00 CET (Berlin)

Dr. Jan Wollenhaupt, Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography (HZB-MX), Germany

Crystallographic Fragment Screening at BESSY II — From Hits to Improved Binders

When fragment screening is carried out using X-ray crystallography it reveals the 3D-position of the fragment hits inside the protein’s binding site. This additional information of the fragment’s position is highly valuable for further improvement of the usual “low-affinity fragments” to create binders of higher potency. By combining fragment-based and structure-based drug discovery, binders of higher potency can be achieved.

At the macromolecular crystallography (MX) beamlines at BESSY II, a dedicated workflow was established for the user community. It fosters efficient and convenient screening[1] and is based on several unique developments: First, the very diverse F2X fragment libraries that deliver high hit rates, mostly in the range of 20-25%.[2,3] Second, tools like the EasyAccess Frame ensure fast and comfortable crystal soaking and harvesting.[4] After data collection at the state-of-the-art MX beamlines at BESSY II, data analysis is highly automated and conveniently interfaced via the FragMAXapp setup at HZB.[5] FragMAXapp enables automatic data treatment using a number of pipelines, including the HZB-developments XDSAPP for automatic processing and fspipeline for automatic refinement.[6,7] As a final step, improved methodologies like PanDDA are applied for the best identification of the fragments in the electron density.[8]

Beyond efficient MX-based screening, HZB also offers methods of hit evolution to higher potency via fragment growing. In HZB’s Frag4Lead workflow the 3D-information of the crystallographic hits are used as an anchor for virtual pre-screening of suitable candidates from chemical catalogs.[9] This way, the first fragment growing step can be achieved without the need for custom synthesis and minimal virtual-screening expertise. Jan and team successfully employed Frag4Lead to advance fragment hits to single-digit micromolar binders in one step and shall report about this.

[1]    Wollenhaupt, J. et al. J. Vis. Exp. 2021, 62208 (2021).

[2]    Wollenhaupt, J. et al.. Structure 28, 694-706.e5 (2020).

[3]    Barthel, T. et al. J. Med. Chem. (2022).

[4]    Barthel, T. et al. J. Appl. Cryst. 54, 376–382 (2021).

[5]    Lima, G. M. A. et al. Acta Cryst. D 77, 799–808 (2021).

[6]    Sparta, K. et al. J. Appl. Cryst. 49, 1085-1092 (2016).

[7]    Schiebel, J. et al. Structure 24, 1398–1409 (2016).

[8]    Pearce, N. M., et al. Nature Comm. 8, 15123 (2017).

[9]    Metz, A. et al. Acta Cryst. D 77, 1168–1182 (2021).

Current news

category
Challenge
BioSolveIT Crowns Two Winners of the Scientific Challenge Winter 2023
December 19, 2024 08:43 CET
We are proud to announce not one, but two winners of the Scientific Challenge Winter 2024: Harry Tran and Katharina Buchthal! Due to the exceptional achievements and execution within both projects, it was simply too difficult for us to choose just one outstanding entry. As a result, we decided to...
Read on
category
Software
Peptide Design with New FastGrow Sets
December 17, 2024 10:00 CET
FastGrow now enables efficient and lightning-fast structure-based peptide design with two new libraries. These are the largest sets to date, containing over 661,000 combinations of proteinogenic amino acids and amide bioisosteres, which can be screened within seconds for the best shape-complementary solutions. How are the sets designed? Both sets are...
Read on
category
Software
HPSee 2.0: Unlocking Speed and Scale in Drug Discovery
November 8, 2024 14:00 CET
Imagine you’re part of a team looking for new potential compunds and screening ultra-vast Chemical Spaces to find the right ones. But running these massive calculations requires serious computing power, and managing all that data can be complicated and time-consuming. That’s where HPSee steps in, making the whole process simpler,...
Read on